The Determination of Acid-Rock Reaction Kinetic Equation With Deep-Penetration and Low-Damage Acid

Jigang WANG, Yongle XIN, Shuyi WANG, Hongbin WANG, Decheng MA

Abstract


Deep-penetration and low-damage host acid is composed of two kinds of organic acids, two kinds of inorganic acid and necessary organic additives, and the concentration is 16%. It is a kind of acid liquid system which has a strong versatility, less damage to the formation, strong acid rock reaction rate, high final dissolution rate, and organic inorganic scaling. In order to determine the reaction rate of the acid and the reaction kinetics equation of deep penetrating low damage acid, the acid rock reaction rate of common acid and deep-penetrating and low-damage acid is studied.


Keywords


Acid rock reaction; Kinetic equation; Deep-penetration and low-damage acid; Mechanism

Full Text:

PDF

References


[1] Gadiyar, B. R., & Civan, F. (1994, February). Acidization-induced formation damage: Experimental and modeling studies. SPE Formation Damage Control Symposium, Lafayette, Louisiana.

[2] Shuchart, C. E. (1995, May). HF acidizing returns analyses provide understanding of HF reactions. Paper presented at SPE European Formation Damage Conference, The Hague, Netherlands.

[3] Mehta, S. (1991, October). Imaging of wet specimens in their state using environmental scanning electron microscope (ESEM): Some examples of importance to petroleum technology. Paper presented at SPE Annual Technical Conference and Exhibition, Dallas, Texas.

[4] Kume, N. (1999). New HF acid system improves sandstone matrix acidizing success ratio by 400% over conventional mud acid system in Niger delta basin. SPE Ann. Tech. Conf. Exhbn., 185-199.

[5] Hill, A. D., Pourmik, M., Zou, C. L., Nieto, C. M., Melendez, M. G., Zhu, D., & Weng, X. W. (2007, January). Small-scale fracture conductivity crated by modern acid-fracture fluids. Paper presented at SPE Hydraulic Fracturing Technology Conference, College Station, Texas, U.S.A.

[6] Mumallah, N. A. (1998, February). Factors influencing the reaction rate of hydrochloric acid and carbonate rock. Paper presented at SPE International Symposium on Oilfield Chemistry, Anaheim, California.

[7] Gdanshi, R. D., & Norman, L. R. (2002). Using the hollow-core test to determine acid reaction rates. SPE Production Engineering, 1(2), 111-116.




DOI: http://dx.doi.org/10.3968/7688

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 Advances in Petroleum Exploration and Development




Share us to:   


Reminder

  • How to do online submission to another Journal?
  • If you have already registered in Journal A, then how can you submit another article to Journal B? It takes two steps to make it happen:

1. Register yourself in Journal B as an Author

  • Find the journal you want to submit to in CATEGORIES, click on “VIEW JOURNAL”, “Online Submissions”, “GO TO LOGIN” and “Edit My Profile”. Check “Author” on the “Edit Profile” page, then “Save”.

2. Submission

  • Go to “User Home”, and click on “Author” under the name of Journal B. You may start a New Submission by clicking on “CLICK HERE”.

We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
caooc@hotmail.com; aped@cscanada.net; aped@cscanada.org

 Articles published in Advances in Petroleum Exploration and Development are licensed under Creative Commons Attribution 4.0 (CC-BY)

ADVANCES IN PETROLEUM EXPLORATION AND DEVELOPMENT Editorial Office

Address:1020 Bouvier Street, Suite 400, Quebec City, Quebec, G2K 0K9, Canada.

Telephone: 1-514-558 6138
Website: Http://www.cscanada.net
Http://www.cscanada.org
E-mail:office@cscanada.net;  office@cscanada.org

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures